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Introduction 
This paper explains and documents the usage of ProtoBusMAG, a software option, now available on 

all LeCroy oscilloscopes. This case study spans three functions: MessageToValue, DeltaMessage and 

BusLoad. Each one is exemplified on real data on a CAN bus emitted by an inertial sensor.  

ProtoBusMAG operates on any decoded stream generated by a LeCroy oscilloscope, such as UART, 

MIL-STD-1553, SPI, ARINC 429, LIN, FlexRAY, MIPI, etc. and provides unprecedented insights into the 

quality and structure of the data at both the analog and digital levels. 

Context 
Geneva’s public Transportation Authorities (TPG) has initiated a project aimed at improving 

passenger’s comfort on board their vehicles. To that effect, the Laboratory of Numerical Systems 

(LSN) of Geneva’s University of Applied Sciences has been contracted to develop acquisition modules 

capable of measuring accelerations in 3 directions, with great accuracy and at the appropriate rate. 

These small modules will be deployed on board TPG’s vehicles, allowing real time measurement of 

the acceleration values, during travels on Geneva’s transportation network. The setup allows a 

precise monitoring of the shaking, vibrations and centrifugal forces perceived by the passengers. 

Furthermore, the correlation with the GPS position of the vehicle yields valuable and objective 

information helping to improve critical spots on the network infrastructure.  The same system can 

also be used to train the drivers, especially on long vehicles, where the trailing end might still be in a 

curve. 

.  

Figure 1: Typical TPG bus, with a 3 Node sensor’s network distributed along the vehicle. 

Implementation Details 
The core acquisition module consists of an LIS3LV02DQ inertial sensor (ST Microelectronics), slaved 

to a LPC2292 microcontroller (NXP), over an I2C bus. Each module is capable of measuring 3D 

accelerations with a 15 bit resolution, in a range of ±6[g]. 

 



 

Figure 2: The LIS3LV02DQ inertial sensor mounted on a small PCB is the heart of the acquisition system, and delivers the 
necessary data to assess passenger’s comfort in real time. 

 

The microcontroller polls the inertial sensor at a rate of 15 ms and broadcasts the X, Y and Z 

accelerations onto a CAN bus operating at 250 kb/s, interconnecting the sensors of the vehicle (as 

shown in Fig. 1). 

A ruggedized PC taps the data from the CAN network and logs it onto a storage device. The system 

also interfaces to a GPS sensor, gathering the positional information (WGS84/CH1903) necessary to 

interpret the inertial data at post processing time. 

 

Figure 3: Typical CAN Frame 0x981019, containing X and Y accelerations expressed as IEEE754 floating point numbers. 
The message length is about 125 bits (with slight variations due to the insertion of the stuff bits), and spans a time of 
500 µs since every bit is 4 µs long. 

When in operation, the system continuously measures acceleration data in 3 directions every 15 ms 

as well as positional data every second and broadcasts this data in real time on the same CAN bus, in 

the floating point 32 bit format shown in Fig. 3.  

CAN Traffic Topology 
The message structure and distribution outlined above leads to the overall CAN traffic shown below. 

Each module is unaware of the presence on the bus of the other modules, and emits its data at an 

even rate, but asynchronously to other modules.  A smart time slot allocation rule, based on the CAN 

prioritization scheme among the sensors yields a balanced distribution of each sensor’s data. The 

validation of this mechanism is described below. 



 

Figure 4: Snapshot of the overall CAN traffic on the CAN bus (250 kb/s) of a moving vehicle. 

Validation of the Data distribution on the bus, using DeltaMessage and 

BusLoad 
As a first validation item, LeCroy’s ProtobusMAG was used to verify the even distribution of the 

relevant data onto the bus. This is best done using the Function DeltaMessage, which computes the 

time elapsed between messages with the same ID on the CAN bus. In this particular case, we focus 

on message 0x981019 by filtering it out and using a long record of 10 seconds to obtain a statistically 

meaningful result.  As can be seen in the results section of the image below, 665 occurrences of the 

message are spaced in average by 15.01 ms, with minimum and maximum intervals of 13.9 and 16.2 

ms, which is fully acceptable for this type of mission. 

 

Figure 5: The DeltaMessage Parameter settings (left) and results (right) for monitoring CAN ID 0x981019 on the bus, 
shows a mean distance of 15.01 [ms]. 

 

Another critical value for the system design engineer is the balanced broadcast of all 3 sensors on 

the bus. These numbers are easily extracted from the traffic by use of the BusLoad parameter. 



 

Figure 6: The BusLoad parameter, with its setting and results, used on 6 of the messages, establishes that each message 
uses about 3.7 % of the bus bandwidth. This correlates with the fact that a message of 500 [µs] is broadcasted every 15 
[ms], therefore a busload of 3.3 %.  The extra 0.4% is explained by the fact that a complete message length encompasses 
the CAN Inter Message Gap after the last bit. 

Detecting numerical pathologies in the data 

Observation Setup 
The observation setup is matched to the example shown in Figure 3, and spans the first 32 bits of 

CAN message 0x981019 as a floating point number, with units in [g] to reflect the fact that we 

observe accelerations. Units will propagate throughout the computational chains, to the Parameters, 

the Track, the Cursors, the Descriptors and all subsequent processing elements. The unit 

propagation helps in keeping a clearer mental model. 

 

Figure 7: Setup of the MessageToValue parameter for the X acceleration, a 32 bit subfield of message 0x981019, located 
at bit 0. (See also Fig. 3) 

Healthy case 
Figure 8 shows the normal graph of the 3 D accelerations expected on the CAN bus using the 

MessageToValue parameter. This is the reference, when looking at pathological cases later. 



 

Figure 8: This is the normal 3D output of the LIS3Lv02DQ inertial sensor when manipulated softly. Accelerations remain 
between ±1 [g] in all directions. 

Pathological cases 
The following 4 examples make use of the MessageToValue parameter on the acceleration data 

broadcasted on the CAN bus.  The test procedure is rather simple and based on manual, smooth 

rotating and tilting of the sensor shown in Fig. 2.   The normal response of the sensor is shown on 

Fig. 8, with the typical X-Y-Z acceleration components shifting between themselves. The following 

table shows what appears on the oscilloscope screen, in the Track signal, when various pathologies 

affect the numerical processing chain. 

Track of MessageToValue on the oscilloscope Observation Possible Cause 

 
 

Glitches or 
discontinuities on 
signal, beyond the 
possible 
accelerations 
expected in a 
smooth manual 
test. 

Hardware errors in 
the sensor. 
Software conversion 
errors. 
Transmission errors 
on either digital bus. 
 

 
 

Railing effect on the 
low side of the 
signal. 

Hardware faults in 
the ADC or the 
inertial sensor. 
Software errors such 
as an incorrect cast 
in C, incorrect byte 
swap, incorrect 
mask, partial transfer 
on the I2C bus. 
 

 
 

Banding effect, a 
value range of the 
output is skipped. 

Hardware errors in 
the sensor. 
Software error in the 
micro controller 
code. 
Transmission errors 
on digital bus. 
 



 

Stair casing effect Loss of least 
significant bits, 
either in hardware or 
in software. 

 

Other possible observations 
It would also be possible to conduct the same observations on the I2C bus between the µC and the 

inertial sensor. The MessageToValue function is also used, albeit with different setup, since the 

values are 16 bit signed instead of floating points. 

The DeltaMessage function could be used to measure the conversion delay between the messages 

on the I2C bus and the corresponding message on the CAN bus. This measurement reflects the fact 

that the microcontroller acts as a gateway between both digital buses.  

If available, the analog output of the sensor could be observed. It would yield a curve similar to 

those of Figure 8, with a slight forward lag in time, since the analog data precedes its apparition on 

the digital buses. Here the AnalogToMessage function could be used. 

It would also be possible to sum all 3 acceleration vector’s components using the Function set 

offered by the DSO: 

Total Acceleration =                                                            
 

 

When manipulated smoothly, the total acceleration’s magnitude should always remain around the 

value of 1[g]. 

It would also be possible to integrate the acceleration twice and compute the position of the sensor 

in all directions.  

Conclusions 
The development, monitoring or maintenance of complex numerical systems is eased by using the 

right tools. A digital oscilloscope of the latest generation allows the observation of various signals at 

different points of the numerical processing chain. The simultaneous observation and correlation of 

analog, digital and encoded data allows rapid analysis of the defect and shortens the development 

cycles. 

Thanks 
Many thanks to F. Vannel and C. Abegg at the LSN for the opportunity to capture live signals on the 

system described here and the insights and discussions, as well as U. Schroffenegger and G. Ritter at 

LeCroy for the collaboration, insights and exchanges on the ProtoBusMAG module embedded in the 

LeCroy oscilloscopes. 



The author 
Roland Gamper is Senior Software Engineer and was employed 22 years by LeCroy in Geneva. He 
currently undertakes contract developments, in particular in the field of Protocol analysis, through 
Lahniss Ltd. He also teaches microcontroller programming at Geneva’s University of Applied 
Sciences. 


